Table 7a-1 lists the eleven most abundant gases found in the Earth's lower atmosphere by volume. Of the gases listed, nitrogen, oxygen, water vapor, carbon dioxide, methane, nitrous oxide, and ozone are extremely important to the health of the Earth's biosphere.
The table indicates that nitrogen and oxygen are the main components of the atmosphere by volume. Together these two gases make up approximately 99% of the dry atmosphere. Both of these gases have very important associations with life. Nitrogen is removed from the atmosphere and deposited at the Earth's surface mainly by specialized nitrogen fixing bacteria, and by way of lightning through precipitation. The addition of this nitrogen to the Earth's surface soils and various water bodies supplies much needed nutrition for plant growth. Nitrogen returns to the atmosphere primarily through biomass combustion and denitrification.
Oxygen is exchanged between the atmosphere and life through the processes of photosynthesis and respiration. Photosynthesis produces oxygen when carbon dioxide and water are chemically converted into glucose with the help of sunlight. Respiration is a the opposite process of photosynthesis. In respiration, oxygen is combined with glucose to chemically release energy for metabolism. The products of this reaction are water and carbon dioxide.
The next most abundant gas on the table is water vapor. Water vapor varies in concentration in the atmosphere both spatially and temporally. The highest concentrations of water vapor are found near the equator over the oceans and tropical rain forests. Cold polar areas and subtropical continental deserts are locations where the volume of water vapor can approach zero percent. Water vapor has several very important functional roles on our planet:
- It redistributes heat energy on the Earth through latent heat energy exchange.
- The condensation of water vapor creates precipitaion that falls to the Earth's surface providing needed fresh water for plants and animals.
- It helps warm the Earth's atmosphere through the greenhouse effect.
The fifth most abundant gas in the atmosphere is carbon dioxide. The volume of this gas has increased by over 35% in the last three hundred years (see Figure 7a-1). This increase is primarily due to human induced burning from fossil fuels, deforestation, and other forms of land-use change. Carbon dioxide is an important greenhouse gas. The human-caused increase in its concentration in the atmosphere has strengthened the greenhouse effect and has definitely contributed to global warming over the last 100 years. Carbon dioxide is also naturally exchanged between the atmosphere and life through the processes of photosynthesis and respiration.
Methane is
a very strong greenhouse gas. Since 1750, methane concentrations
in the atmosphere have increased by more than 150%.
The primary sources for the additional methane added
to the atmosphere (in order of importance) are: rice
cultivation; domestic grazing animals; termites; landfills;
coal mining; and, oil and gas extraction. Anaerobic conditions
associated with rice paddy flooding results in the formation
of methane gas. However, an accurate estimate of how
much methane is being produced from rice paddies has
been difficult to ascertain. More than 60% of all rice
paddies are found in India and China where scientific
data concerning emission rates are unavailable. Nevertheless,
scientists believe that the contribution of rice paddies
is large because this form of crop production has more
than doubled since 1950. Grazing animals release methane
to the environment as a result of herbaceous digestion.
Some researchers believe the addition of methane from
this source has more than quadrupled over the last century.
Termites also release methane through similar processes.
Land-use change in the tropics, due to deforestation,
ranching, and farming, may be causing termite numbers
to expand. If this assumption is correct, the contribution
from these insects may be important. Methane is also
released from landfills, coal mines, and gas and oil
drilling. Landfills produce methane as organic wastes
decompose over time. Coal, oil, and natural gas deposits
release methane to the atmosphere when these deposits
are excavated or drilled.
The average concentration of the greenhouse gas nitrous
oxide is now increasing at a rate of 0.2 to 0.3% per year. Its part
in the enhancement of the greenhouse effect is minor relative to the other
greenhouse gases already mentioned. However, it does have an important role
in the artificial fertilization of ecosystems. In extreme cases, this fertilization
can lead to the death of forests, eutrophication of aquatic habitats, and species
exclusion. Sources for the increase of nitrous oxide in the atmosphere include:
land-use conversion; fossil fuel combustion; biomass burning; and soil fertilization.
Most of the nitrous oxide added to the atmosphere each year comes from deforestation
and the conversion of forest, savanna and grassland ecosystems into agricultural
fields and rangeland. Both of these processes reduce the amount of nitrogen
stored in living vegetation and soil through the decomposition of organic matter.
Nitrous oxide is also released into the atmosphere when fossil fuels and biomass
are burned. However, the combined contribution to the increase of this gas
in the atmosphere is thought to be minor. The use of nitrate and ammonium fertilizers
to enhance plant growth is another source of nitrous oxide. How much is released
from this process has been difficult to quantify. Estimates suggest that the
contribution from this source represents from 50% to 0.2% of nitrous oxide
added to the atmosphere annually.
Ozone's role
in the enhancement of the greenhouse effect has been difficult
to determine. Accurate measurements of past long-term (more than
25 years in the past) levels of this gas in the atmosphere are
currently unavailable. Moreover, concentrations of ozone gas
are found in two different regions of the Earth's atmosphere.
The majority of the ozone (about 97%) found in the atmosphere
is concentrated in the stratosphere at
an altitude of 15 to 55 kilometers above the Earth's surface.
This stratospheric ozone provides an important service to life
on the Earth as it absorbs harmful ultraviolet radiation. In
recent years, levels of stratospheric
ozone have been decreasing due to the buildup of human
created chlorofluorocarbons in
the atmosphere. Since the late 1970s, scientists have noticed
the development of severe holes in the ozone layer over Antarctica.
Satellite measurements have indicated that the zone from 65° North
to 65° South latitude has had a 3% decrease in stratospheric
ozone since 1978.
Ozone is also highly concentrated at the Earth's surface in and around cities. Most of this ozone is created as a by product of human created photochemical smog. This buildup of ozone is toxic to organisms living at the Earth's surface.
Table 7a-1: Average composition of the atmosphere up to an altitude of 25 km.
Gas Name |
Chemical Formula |
Percent Volume |
Nitrogen |
N2 |
78.08% |
Oxygen |
O2 |
20.95% |
*Water |
H2O |
0 to 4% |
Argon |
Ar |
0.93% |
*Carbon Dioxide |
CO2 |
0.0360% |
Neon |
Ne |
0.0018% |
Helium |
He |
0.0005% |
*Methane |
CH4 |
0.00017% |
Hydrogen |
H2 |
0.00005% |
*Nitrous Oxide |
N2O |
0.00003% |
*Ozone |
O3 |
0.000004% |
* variable gases